Posts Tagged ‘Technology’

Australian homes among first to get Tesla’s Powerwall solar-energy battery

September 27th, 2015

Powered by Guardian.co.ukThis article titled “Australian homes among first to get Tesla’s Powerwall solar-energy battery” was written by Oliver Milman, for theguardian.com on Friday 18th September 2015 03.08 UTC

Australia will be one of the first countries in the world to get Tesla’s vaunted Powerwall battery storage system, as several other companies scramble to sign up Australia’s growing number of households with solar rooftops.

US firm Tesla said that its 7kWH home energy storage units would be available by the end of the year in Australia, ahead of previous predictions it would arrive in 2016.

The Powerwall is a unit that sits on an interior wall. It has a lithium-ion battery, used to store energy created by solar panels on the household roof.

Tesla, which also makes electric cars, is the most high-profile company in the emerging battery storage industry – an area that is seen as crucial in making intermittent renewable energy such as solar and wind into a reliable accompaniment, or even alternative, to fossil fuel-fired power grids.

Canberra-based firm Reposit Power, which enables people to directly buy and sell their stored electricity, has partnered with Tesla for Powerwall’s launch.

There are a handful of existing Australian alternatives to the Powerwall, such as Redflow, headed by Simon Hackett, who founded Internode. Hackett also sits on the board of the NBN.

“Tesla’s arrival is important because they have such a high profile,” said Prof Anthony Vassallo, a sustainable energy expert at the University of Sydney. “The Tesla product isn’t unique by any stretch, but it’s the Apple brand of the battery storage industry, they have the sex appeal that others don’t.

“Solar PV and batteries are such a wonderful combination. Australians have demonstrated they are quite happy to purchase PV systems, Australia has a great solar resource and to have a battery to store that makes a lot of sense.

“There are packages of PV and batteries being offered by retailers and, as prices come down, we’ll see a lot more of this. Tesla’s price point in the US – of about US,000 (,173) – would be competitive here, it will sharpen up the players to make more efficient and higher-performing systems.”

Vassallo pointed out that the technology still has some way to improve – a 7kWH system will store little more than an hour’s electricity generated by a typical 5kWH solar system, meaning that some people may have to have several Powerwall, or equivalent, systems on their walls.

“I’d be wary of claims that people can go entirely off the grid, but it’s a first step,” he said. “Australia has high electrity prices, and once the price is acceptable I think the take-up will be strong.”

There are more than 1.3m households in Australia with rooftop solar, with the number increasing rapidly as the price of PV systems tumble. State-based tariffs have been gradually withdrawn across the country, while the federal government announced in July that it would instruct the Clean Energy Finance Corporation to favour large-scale solar over rooftop solar in its funding decisions.

Labor has set a target of Australia generating 50% of its electrity from renewable energy by 2030, although has provided little detail on how this would be achieved. The prime minister, Malcolm Turnbull, said the goal was “reckless” as the cost of it has not been quantified.

Vassallo said, “Australia could reach that 50% target, it just requires well-designed policies and markets that allow a transition from centralised, large-scale fossil fuels to efficient but variable renewables.

“Storage is a key part to make that happen. The beauty of renewables is that once you’ve managed the capital cost, there is no fuel cost. There’s an energy security there you don’t get with fossil fuels.”

guardian.co.uk © Guardian News & Media Limited 2010

Published via the Guardian News Feed plugin for WordPress.

The self-healing concrete that can fix its own cracks

June 29th, 2015

Powered by Guardian.co.ukThis article titled “The self-healing concrete that can fix its own cracks” was written by Rosie Spinks, for theguardian.com on Monday 29th June 2015 06.00 UTC

Of all the carbon emitters that surround us every day it’s easy to overlook one of the most ubiquitous: concrete.

The material that builds our buildings, paves our roads and spans our bridges is the most widely produced and consumed material on earth apart from water, according to a WBCSD report. By 2030, urban growth in China and India will place global cement output at 5bn metric tons per year, with current output already responsible for 8% of the global emissions total, according to a WWF report.

Although its environmental impact is far from benign, concrete – defined as the mixture of aggregates, water and the hydraulic powder material known as cement – is incredibly useful and widely applicable. Thanks to its durability, easily-sourced raw materials and thermal resistance, it is unlikely that an alternative building material will replace it on a large scale any time soon.

Hendrik Jonkers, a microbiologist at Delft University and a finalist at the recent 10th annual European Inventor Awards, has a plan to increase the lifespan of concrete. His innovation, which embeds self-activating limestone-producing bacteria into building material, is designed to decrease the amount of new concrete produced and lower maintenance and repair costs for city officials, building owners and homeowners.

Jonkers’ self-healing concrete marries two fields: civil engineering and marine biology.

“One of my colleagues, a civil engineer with no knowledge of microbiology, read about applying limestone-producing bacteria to monuments [to preserve them],” Jonkers said. “He asked me: ‘Is it possible for buildings?’ Then my task was to find the right bacteria that could not only survive being mixed into concrete, but also actively start a self healing process.”

When it comes to Jonkers’ concrete, water is both the problem and the catalyst that activates the solution. Bacteria (Bacillus pseudofirmus or Sporosarcina pasteurii) are mixed and distributed evenly throughout the concrete, but can lie dormant for up to 200 years as long as there is food in the form of particles. It is only with the arrival of concrete’s nemesis itself – rainwater or atmospheric moisture seeping into cracks – that the bacteria starts to produce the limestone that eventually repairs the cracks. It’s a similar process to that carried out by osteoplast cells in our body which make bones.

Healing these cracks the old-fashioned way is no small expense. According to HealCON, the project working on the self-healing concrete, annual maintenance cost for bridges, tunnels and other essential infrastructure in the EU reaches €6bn (£4.2bn) a year.

The invention comes in three forms: a spray that can be applied to existing construction for small cracks that need repairing, a repair mortar for structural repair of large damage and self-healing concrete itself, which can be mixed in quantities as needed. While the spray is commercially available, the latter two are currently in field tests. One application that Jonkers predicts will be widely useful for urban planners is highway infrastructure, where the use of de-icing salts is notoriously detrimental to concrete-paved roads.

Encouraging as it sounds, Jonkers’ self-healing concrete can’t cure very wide cracks or potholes on roads just yet; the technology is currently able to mend cracks up to 0.8mm wide. And while making better concrete is a more feasible approach to sustainable building than shifting to an entirely new building material, that doesn’t mean the innovation is a sure bet. The current cost would be prohibitive for many. A standard-priced cubic meter of concrete is €70, according to Jonkers, while the self-healing variety would cost €100.

John Alker, director of policy at the UK Green Building Council, says the success of any new green infrastructure technology relies on innovators like Jonkers being able to demonstrate the particular benefit of a product, whether that’s around cost or enabling a client to meet environmental targets.

“We’ve seen a lot of innovation around concrete as it is a highly impactful product in terms of the energy that goes into producing it and it’s simultaneously a very important construction product globally,” Alker said. But persuading the construction industry to change its behaviour will be tough, he says. “It comes down to innovative clients and developers being willing to experiment with their building and try and test these materials and prove a track record before others will follow.”

Though Jonkers is aware of the challenges of reaching wide adoption of the material, he points out that in particularly vulnerable environments – such as coastal communities or tropical regions that are increasingly experiencing extreme rainfall – some are already seeing the cost-benefit analysis of using this technology from the outset.

“We did a project in Ecuador where we made a concrete canal and irrigation system with self-healing concrete,” Jonkers said. “We are doing tests all over the world in developing countries where they realise that though this is more expensive than current tech, they see the profit because they will have to avoid repair down the line.”

guardian.co.uk © Guardian News & Media Limited 2010

Published via the Guardian News Feed plugin for WordPress.

The streets were paved with algae: a greener material?

June 11th, 2015

Powered by Guardian.co.ukThis article titled “The streets were paved with algae: a greener material?” was written by Rich McEachran, for theguardian.com on Monday 8th June 2015 12.38 UTC

The process of surfacing a road isn’t complicated. Layers of asphalt, which is composed mostly of bitumen (a byproduct of crude oil distillation), are poured over an aggregate of crushed stone and sand; the asphalt acts as a glue, binding the mixture together to form asphalt concrete.

Maintaining the roads, however, is a costly job. According to the Asphalt Industry Alliance it would cost more than £12bn to restore all road networks in England alone to a reasonable condition.

Simon Hesp, a professor and chemical engineer at Queen’s University in Ontario, believes standard industry asphalt is not sustainable. “The problem with the composition is that it’s poorly controlled … it uses materials with poor performances,” he says. Hesp says the presence of certain oil residues lowers the quality of the concrete and is a key reason why roads are failing and many potholes need to be filled and cracks fixed.

But there’s not just a maintenance cost. Asphalt, dependent as it is on the oil industry, is resource- and energy-intensive, which is why the race is on to develop a greener alternative.

In Sydney an experiment is under way using printer toner waste blended with recycled oil to produce an environmentally friendly asphalt. And in the past few years there have been studies into the development of non-petroleum bioasphalts.

At Washington State University researchers developed asphalt from cooking oil, and last year academics at Wageningen University in the Netherlands found that lignin – a natural substance found in plants and trees – is another suitable replacement for crude oil bitumen. Other investigations have looked into the use of soybean and canola oil (rapeseed oil) and coffee grounds.

The WSU research, led by Haifang Wen and published at the end of 2013, concluded that the introduction of cooking oil can increase bioasphalt’s resistance to cracking . Wenn also claims it’s possible that, if commercialised, such bioasphalts could cost much less per tonne. The price of standard asphalt can fluctuate wildly as it’s dependent on the price of oil.

Hesp isn’t convinced that cooking oil is the way forward. He says, like petroleum, over time it will cause roads to fail because of weak bonds.

Bruno Bujoli, director of research at CNRS (Centre National de la Recherche Scientifique), agrees that the use of cooking oil “chemically modified to reach appropriate mechanical properties” could significantly affect quality. He also sounds a note of caution about food security, saying that asphalt based on vegetable oils could, if scaled up, affect food stocks

Bujoli recently played a key role in developing a bioasphalt from microalgae. It uses a process known as hydrothermal liquefaction, which is used to convert waste biomass, including wood and sewage, into biocrude oil. The chemical composition of the microalgae bioasphalt differs from petroleum-derived asphalt, but initial tests have concluded that it also bears similar viscous properties and can bind aggregates together efficiently, as well as being able to cope with loads such as vehicles.

How it will perform over time is yet to be determined. The findings were published in April.

Green roads

Bujoli suggests that microalgae – also known for its use in the production of cosmetic and textile dyes – is a greener and more appropriate solution than agricultural oils. The latter, he says, should be kept for food production.

“The benefits of microalgae over other sources include low competition for arable land, high per hectare biomass yields and large harvesting turnovers. There is also the opportunity to recycle wastewater and carbon dioxide as a way of contributing to sustainable development,” he adds.

It’s a neat idea, with an admirable green mission behind it, but how much of an impact can it really have? Technology such as this is still in its infancy, suggests Heather Dylla, director of sustainable engineering at the National Asphalt Pavement Association, a US trade organisation for the paving industry.

“A lot of interesting work is being done in this area, looking at everything from algae, to swine waste, to byproducts from paper making. It’s worth exploring these alternatives, but we need to be sure they provide equivalent or improved engineering properties. We need to understand how they affect the recyclability of asphalt pavement mixtures,” she says.

She points to the “unique” advantage of asphalt when it comes to recycling. “Not only are the aggregates, which make up about 95% of [asphalt concrete], put back to use, but the bitumen can also be reactivated and used again as the glue that holds a pavement together.”

Microalgae could yet put the paving industry on the road to a greener future. For now though, there are plenty of challenges – from price to scalability – for Bujoli and his team to address if the bioasphalt is to be commercialised.

“This is our research focus for the near future. Our current laboratory equipment works in a batch mode,” explains Bujoli. “Scaling up the process will require the design of a large-volume reactor that can operate under continuous flow conditions.”

guardian.co.uk © Guardian News & Media Limited 2010

Published via the Guardian News Feed plugin for WordPress.

Tesla’s new low-cost battery: ‘the missing piece’ in sustainable energy?

May 3rd, 2015

Powered by Guardian.co.ukThis article titled “Tesla’s new low-cost battery: ‘the missing piece’ in sustainable energy?” was written by Sam Thielman in New York, for theguardian.com on Friday 1st May 2015 12.12 UTC

Will the world become battery-powered? That’s certainly the ambition of Elon Musk, the PayPal billionaire turned would-be space explorer and electric car baron.

On Thursday night, Musk unveiled what he called “the missing piece” in sustainable energy: a range of batteries that can be used in homes and businesses to store power from wind or solar or take advantage of cheap electricity to charge up overnight and then be used in peak hours.

Two billion Powerpacks – as the batteries are called – could store enough electricity to meet the entire world’s needs.

“That may seem like an insane number,” Musk said. “We’re talking about trying to change the fundamental energy infrastructure of the world.”

The first place to feel the battery charge will be Nevada. Next year, Musk’s Tesla Motors is set to start operating a power-storage-device “gigafactory” across nearly a thousand acres of Nevada real estate. It’s required to contribute .5bn to the local economy, in return for a .25bn tax break.

Battery expert Davide Andrea, an engineer at Colorado-based battery manufacturer Elithion, worries about costs. The most basic home unit will cost ,500. No details have yet emerged about the cost of the large units Tesla is reportedly supplying to companies including Apple and Google to help manage their power supplies.

“Electricity is way too cheap to store in an expensive battery,” Andrea said. “It’s like saying I’m going to be storing my potatoes in a safe. Potatoes are too cheap to store in a safe.”

But Andrea is sold on the idea that batteries are part of a more efficient energy future. He is currently involved in a new project in Boulder to install batteries in homes, in order to ease the strain on power plants and avoid costly rewiring as the sizes of neighborhoods change.

Felix Kramer, a clean energy entrepreneur in California, said he hopes Musk’s presentation on Thursday evening changes minds.

“Tesla demolished the idea that EVs [electric vehicles] were golf carts,” Kramer said. “And maybe they’re about to do it again now. Maybe they’re about to demolish the idea that we can’t switch from coal and gas to wind and solar because of reliability issues. If they convince consumers, that changes the conversation.”

But Andrea and Kramer are enthusiastic about the possibility of greater infrastructure improvements with greater adoption of electric cars. Power provision could get a lot more efficient if cities can be persuaded to draw power from those car batteries, as well as supplying it. That would provide electricity and diminish local reliance on expensive, fossil fuel-powered generators during times of peak demand – when everyone in New York turns on the air conditioner, for example. Nissan is already trying to do this with the Leaf in Japan.

“In a home, the cost of the storage becomes much more important,” Andrea said. “It solves so many problems – the power company no longer has to turn on a dirty power plant during high-demand times. You can use the present wire infrastructure.”

If those sound like lofty goals, they had frankly better be: Musk will have to impress a great many people in order to justify the gobs of money the state of Nevada is giving him – the gigafactory will be allowed to operate essentially tax-free for 10 years and won’t pay property taxes for another 10 afterward. Beyond even that, the state is giving Tesla m in transferable tax credits, which the company can sell to other businesses in the region.

Nor is it the first time Musk has asked the government to chip in: SpaceX receives 5m in help from Nasa.

Still, if Musk’s batteries can merge wind, solar and electric car power into existing grids, that would constitute tremendous economic savings for cash-strapped municipalities everywhere.

“This is within the power of humanity to do,” Musk told the large crowd gathered at Tesla’s design center in a Los Angeles suburb on Thursday. “We have done things like this before. It is not impossible.”

guardian.co.uk © Guardian News & Media Limited 2010

Published via the Guardian News Feed plugin for WordPress.

Seven things you need to know about sustainable smart technology

April 21st, 2015

Powered by Guardian.co.ukThis article titled “Seven things you need to know about sustainable smart technology” was written by Marcus Alexander Thompson, for theguardian.com on Friday 17th April 2015 11.41 UTC

1. What is a smart machine?

It’s a cognitive, contextually aware computing system capable of making decisions without human intervention. Smart machines use machine learning and data catchments to perform work traditionally conducted by humans. They are supposed to boost efficiency and productivity, and are being pegged as a major component in building a sustainable future.

2. The range of possibility for sustainability applications of smart machines is endless …

But, like all burgeoning technologies, the limits of sustainability within this future are not yet clear. Much will be based on which smart technologies society adopts. What we do know is the smart tech revolution is the first industrial movement that holds sustainability at the forefront of its development, and that’s a good thing.

3. We don’t need to kill the forest to save a tree

Replacing manual services with smart tech is expected to significantly reduce energy consumption. But the energy required to develop, build, run and service smart technology products must be considered. This video about two men cutting grass demonstrates the redundancy of overcapitalising on technology and the dangers of manufacturing a dependancy on regressive technology.

“While I believe, in general, that we’ll save energy by incorporating these machines into our lives, we have to be mindful that they themselves consume energy”, says Marshall Cox, founder and CEO of Radiator Labs.

4. Will smart technology make us stupid?

The successful integration of smart technology will see the enhancement of creative thought. The workforce will need an increasing skill level as more and more mundane work is overtaken. There are concerns that through automation and algorithm technology, human development could be stunted and lulled into complacency. It’s important to be aware of this threat. That said, there were similar fears heading into the industrial revolution and we work harder now than ever.

Philip van Allen, interaction designer, educator and creative technologist says: “There’s a lot of potential here, smart doesn’t always mean super intelligent. If our systems can understand our context, and have access to a lot of relevant information, they can present us with interesting options.”

5. They took our jobs! What are the implications of smart machines in work?

Reducing the human workforce to subservient drones isn’t in anyone’s interest, but it’s unlikely that progress will spiral out of human control. The aspirational focus is for smart machines to enable us to be more productive and flexible. By using them we can make more efficient, sustainable use of our resources.

“From a workforce point of view, smarter machines make us more productive and this allows us to focus on value-added activities”, says Maria Hernandez from Cisco Systems.

6. Technology makes errors, but so do humans

Performance failure is raised as a frequent concern whenever smart tech is involved, especially when we are looking at self-driving vehicles and other sectors where human life could be directly affected by smart machines. There is an argument that the systems should be intelligent enough to work out areas of poor performance and correct themselves. But nothing is fail-proof and it would be naive to think smart tech will be. There will be bugs in the beginning, but hopefully the collateral eggs in this omelette are minimal.

In the best-case scenario, we’ll combine smart technology with the agility of human decision-making to make sustainable and safe decisions. For example, says Chris Bilton, director of research and technology at BT, “The machine provides you with real-time information and you have the choice as to what action to take. This makes you think actively about your behaviours”.

7. It’s coming. Evolve or move aside

Hate it or love it, be prepared for smart technology to become a much bigger part of your life. It offers unbounded potential to improve our lives and enhance sustainability from all angles – home, health, manufacturing, work, transport, energy and leisure. But we also need to address issues such as IT security, skills and labour market problems. At the forefront we need to ensure that smart machines are enabling devices and not controlling mechanisms.

“The intelligence needs to be implemented in a way that augments our creative thinking rather than replaces it, and we need to consider where those boundaries lie,” says Stephen Barker, head of energy and environmental care at Siemens.

In the end, human capital must always remain dominant. “One might say that our humanity is found in what lies between a 1 and a 0,” says Jeff Wilson, dean of Huston-Tillotson University and “professor dumpster”. “That ‘in between’ is not within a machine’s capability. To me that ‘in between’ space will be ours”.

The technology and innovation hub is funded by BT. All content is editorially independent except for pieces labelled “brought to you by”. Find out more here.

Join the community of sustainability professionals and experts. Become a GSB member to get more stories like this direct to your inbox.

guardian.co.uk © Guardian News & Media Limited 2010

Published via the Guardian News Feed plugin for WordPress.